# Gym: FrozenLake
## Summary
This application provides an interface to the classic FrozenLake environment from Gymnasium. The agent must navigate a slippery grid to reach the goal, avoiding holes.
## Data Source
Based on the [FrozenLake](https://gymnasium.farama.org/environments/toy_text/frozen_lake/) environment from Gymnasium.
## elsciRL App Options
### Local Config
| Config Name | Config Code | Description |
|:-----------:|:-----------:|:--------------------------------------------------------------------------:|
| 4x4 | 4x4 | Standard 4x4 FrozenLake grid. |
### Adapters
| Adapter Name | Adapter Code | Description | Output type |
|:-----------------:|:------------:|:---------------------------------------------------------------------------:|:-----------:|
| Numeric | numeric | Encodes the grid state as a tensor of indices. | $tensor$ |
| Language | language | Describes the grid state in natural language. | $tensor$ |
| LLM Adapter | llm | Uses an LLM to generate a language description of the grid state. | $tensor$ |
## Citation
```bibtex
@article{towers2024gymnasium,
title={Gymnasium: A Standard Interface for Reinforcement Learning Environments},
author={Towers, Mark and Kwiatkowski, Ariel and Terry, Jordan and Balis, John U and De Cola, Gianluca and Deleu, Tristan and Goul{\~a}o, Manuel and Kallinteris, Andreas and Krimmel, Markus and KG, Arjun and others},
journal={arXiv preprint arXiv:2407.17032},
year={2024}
}
@phdthesis{Osborne2024,
title = {Improving Real-World Reinforcement Learning by Self Completing Human Instructions on Rule Defined Language},
author = {Philip Osborne},
year = 2024,
month = {August},
address = {Manchester, UK},
note = {Available at \url{https://research.manchester.ac.uk/en/studentTheses/improving-real-world-reinforcement-learning-by-self-completing-hu}},
school = {The University of Manchester},
type = {PhD thesis}
}
```