# TextWorldExpress
## Summary
This application provides an interface to the TextWorldExpress environment, allowing RL agents to interact with text-based worlds and tasks. Supports both numeric and language-based adapters.
## Data Source
Based on the [TextWorldExpress](https://github.com/cognitiveailab/TextWorldExpress) environment.
## elsciRL App Options
### Local Config
| Config Name | Config Code | Description |
|:-----------:|:-----------:|:--------------------------------------------------------------------------:|
| CoinCollector | coin | Collect coins in a text-based world. |
| CookingWorld | cooking | Complete cooking tasks in a text-based world. |
### Adapters
| Adapter Name | Adapter Code | Description | Output type |
|:-----------------:|:------------:|:---------------------------------------------------------------------------:|:-----------:|
| Default Numeric | default | Encodes the text world state as a tensor of indices. | $tensor$ |
| Language | language | Describes the text world state in natural language. | $tensor$ |
| LLM Adapter | llm | Uses an LLM to generate a language description of the text world state. | $tensor$ |
## Citation
```bibtex
@article{jansen2022textworldexpress,
url = {https://arxiv.org/abs/2208.01174},
author = {Jansen, Peter A. and Côté, Marc-Alexandre},
title = {TextWorldExpress: Simulating Text Games at One Million Steps Per Second},
journal = {arXiv},
year = {2022},
}
@phdthesis{Osborne2024,
title = {Improving Real-World Reinforcement Learning by Self Completing Human Instructions on Rule Defined Language},
author = {Philip Osborne},
year = 2024,
month = {August},
address = {Manchester, UK},
note = {Available at \url{https://research.manchester.ac.uk/en/studentTheses/improving-real-world-reinforcement-learning-by-self-completing-hu}},
school = {The University of Manchester},
type = {PhD thesis}
}
```