# Maze Simulation ## Summary This application recreates the maze problems from "[Natural Language Reinforcement Learning](https://arxiv.org/abs/2402.07157)" (2023), adapted for the elsciRL framework. Agents must navigate mazes using both numeric and language-based state representations. ## Data Source Based on code from [waterhorse1/Natural-language-RL](https://github.com/waterhorse1/Natural-language-RL), adapted for elsciRL. ## elsciRL App Options ### Local Config | Config Name | Config Code | Description | |:-----------:|:-----------:|:--------------------------------------------------------------------------:| | umaze | umaze | U-shaped maze configuration. | | double_t | double_t | Double T-shaped maze configuration. | | medium | medium | Medium-sized maze. | | large | large | Large maze configuration. | | random | random | Randomly generated maze. | ### Adapters | Adapter Name | Adapter Code | Description | Output type | |:-----------------:|:------------:|:---------------------------------------------------------------------------:|:-----------:| | Language | language | Describes the maze state in natural language. | $tensor$ | | LLM Adapter | llm | Uses an LLM to generate a language description of the maze state. | $tensor$ | ## Citation ```bibtex @misc{nlrl, title={Natural Language Reinforcement Learning}, author={Xidong Feng and Ziyu Wan and Haotian Fu and Bo Liu and Mengyue Yang and Girish A. Koushik and Zhiyuan Hu and Ying Wen and Jun Wang}, year={2024}, eprint={2411.14251}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2411.14251}, } ```